MENÜ MENÜ
  • Sie verwenden einen veralteten Webbrowser, weshalb es zu Problemen mit der Darstellung kommen kann. Bei Problemen mit der Bestellabgabe können Sie gerne auch telefonisch bestellen unter: 01805 / 30 99 99 (0,14 €/Min., Mobil max. 0,42 €/Min.)

Discriminative Locally-Adaptive Nearest Centroid Classifier

Sun:Discriminative Locally-Adaptive Nea
Autor: Yong-Peng Sun
Verfügbarkeit: nur noch 3 lieferbar
Artikelnummer: 1156080
ISBN / EAN: 9783659276408

Verfügbarkeit: sofort lieferbar

49,00
Inkl. MwSt. , zzgl. Versandkosten

Zusatzinformation

  • Autor:
  • Verlag: LAP Lambert Academic Publishing
  • ISBN / EAN: 9783659276408
  • Bindung: Taschenbuch

Produktbeschreibung

Automatic speech recognition (ASR) is a forefront of technology and research today. The effectiveness of ASR depends upon the accurate and quick classification of phonemes, which are the basic building blocks of speech. To derive such a classifier for phoneme classification in the context of ASR is the subject of my MASc thesis at the University of Waterloo carried out in between April 2011 and July 2012 under the supervision of Professor Fakhreddine Karray. Drawing upon several recent research topics applied to this area, such as discriminative learning and locally adaptive metrics, a novel classifier referred to as the discriminative locally-adaptive nearest centroid classifier (DLANC). DLANC is structurally simple, very quick to train on even very large sets of data, and it also produces very good classification results on standard TIMIT data. This book describes the DLANC classifier in detail, including its background and how it is derived. A detailed comparison between the DLANC classifier and several other existing classifiers for phoneme classification are made on standard TIMIT data. Numerous illustrations and diagrams make many theoretical points easy to understand.

0 Kundenmeinungen

Bitte schreiben Sie uns Ihre Meinung zu: Discriminative Locally-Adaptive Nearest Centroid Classifier

Sie könnten auch an folgenden Produkten interessiert sein