DIMENSIONALITY REDUCTION FOR CLASSIFICATION WITH HIGH-DIMENSIONAL DATA
Tian:DIMENSIONALITY REDUCTION FOR CLASS
Autor: | Siva Tian |
---|---|
Verfügbarkeit: | Auf Lager. |
Artikelnummer: | 1312713 |
ISBN / EAN: | 9783639288681 |
Zusatzinformation
- Autor: Siva Tian
- Verlag: VDM Verlag Dr. Müller
- ISBN / EAN: 9783639288681
- Bindung: Taschenbuch
Produktbeschreibung
High-dimensional data refers to data with a large number of variables. Classifying these data is a difficult problem because the enormous number of variables poses challenges to conventional classification methods and renders many classical techniques impractical. A natural solution is to add a dimensionality reduction step before a classification technique is applied. We Propose three methods to deal with this problem: a simulated annealing (SA) based method, a multivariate adaptive stochastic search (MASS) method, and a functional adaptive classification (FAC) method. The third method considers functional predictors. They all utilize stochastic search algorithms to select a handful of optimal transformation directions from a large number of random directions in each iteration. These methods are designed to mimic variable selection type methods, such as the Lasso, or variable combination methods, such as PCA, or a method that combines the two approaches. We demonstrate the strengths of our methods on an extensive range of simulation and real-world studies.
Sie könnten auch an folgenden Produkten interessiert sein
-
-
Diseño de una arquitectura de red para una empresa
Ramirez Molina:Diseño de una arquitectu Als Taschenbuch gegenüber Hardcover 69,00
-
Anwendung von Semantic-Web Techniken im Wissensmanagement
Seibert,J.:Anwend.v.Semantic-Web Techn. Als Taschenbuch gegenüber Hardcover 49,00