MENÜ MENÜ
  • Sie verwenden einen veralteten Webbrowser, weshalb es zu Problemen mit der Darstellung kommen kann. Bei Problemen mit der Bestellabgabe können Sie gerne auch telefonisch bestellen unter: 01805 / 30 99 99 (0,14 €/Min., Mobil max. 0,42 €/Min.)

DIMENSIONALITY REDUCTION FOR CLASSIFICATION WITH HIGH-DIMENSIONAL DATA

Tian:DIMENSIONALITY REDUCTION FOR CLASS
Autor: Siva Tian
Verfügbarkeit: Auf Lager.
Artikelnummer: 1312713
ISBN / EAN: 9783639288681

Verfügbarkeit: sofort lieferbar

59,00
Inkl. MwSt. , zzgl. Versandkosten

Zusatzinformation

  • Autor:
  • Verlag: VDM Verlag Dr. Müller
  • ISBN / EAN: 9783639288681
  • Bindung: Taschenbuch

Produktbeschreibung

High-dimensional data refers to data with a large number of variables. Classifying these data is a difficult problem because the enormous number of variables poses challenges to conventional classification methods and renders many classical techniques impractical. A natural solution is to add a dimensionality reduction step before a classification technique is applied. We Propose three methods to deal with this problem: a simulated annealing (SA) based method, a multivariate adaptive stochastic search (MASS) method, and a functional adaptive classification (FAC) method. The third method considers functional predictors. They all utilize stochastic search algorithms to select a handful of optimal transformation directions from a large number of random directions in each iteration. These methods are designed to mimic variable selection type methods, such as the Lasso, or variable combination methods, such as PCA, or a method that combines the two approaches. We demonstrate the strengths of our methods on an extensive range of simulation and real-world studies.

0 Kundenmeinungen

Bitte schreiben Sie uns Ihre Meinung zu: DIMENSIONALITY REDUCTION FOR CLASSIFICATION WITH HIGH-DIMENSIONAL DATA

  • Wenn Sie dieses Eingabefeld sehen sollten, lassen Sie es leer!

Sie könnten auch an folgenden Produkten interessiert sein