Fault Isolation Using a Reconstruction Algorithm
Mousavi:Fault Isolation Using a Reconst
Autor: | Sayyed Hamidreza Mousavi / Mehdi Shahbazian |
---|---|
Verfügbarkeit: | Auf Lager. |
Artikelnummer: | 846002 |
ISBN / EAN: | 9783659323843 |
Zusatzinformation
- Autor: Sayyed Hamidreza Mousavi / Mehdi Shahbazian
- Verlag: LAP Lambert Academic Publishing
- ISBN / EAN: 9783659323843
- Bindung: Taschenbuch
Produktbeschreibung
Process history based approaches for fault diagnosis has been widely used recently. Principal Component Analysis (PCA) is one of these approaches, which is a linear approach; however most of the processes are nonlinear. Hence nonlinear extensions of the PCA have been developed. Nonlinear Principal Component Analysis (NLPCA) based on the neural networks is a common method which is used for process monitoring and fault diagnosis. NLPCA based neural networks are implemented using different methods, in this book we apply Auto-Associative Neural Networks (AANN) for implementing NLPCA. This work is aimed towards the development of an algorithm used in conjunction with an Auto Associative Neural Network (AANN) to help locate and reconstruct faulty sensor inputs in control systems. Also an algorithm is developed for locating the source of the process fault.
Sie könnten auch an folgenden Produkten interessiert sein
-
-
Diseño de una arquitectura de red para una empresa
Ramirez Molina:Diseño de una arquitectu Als Taschenbuch gegenüber Hardcover 69,00
-
Anwendung von Semantic-Web Techniken im Wissensmanagement
Seibert,J.:Anwend.v.Semantic-Web Techn. Als Taschenbuch gegenüber Hardcover 49,00